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Library of Grid Interpolation Modules (INLib)

S. Gopalsamy1 Bharat K. Soni2

1 Introduction

Interpolation of data/solution values from one grid to another, known as grid interpolation,
is required in many applications dealing with dynamically moving/deforming/changing grids
and also in multidisciplinary applications requiring distinct grid resolution/strategies. Grid
manipulation tools, including grid interpolation, are utilized at many DoD simulation steps
starting from geometry preparation and grid generation to post-processing and visualiza-
tion. These steps are associated with numerical simulations involving Computational Fluid
Dynamics (CFD), Computational Structural Mechanics (CSM), and other Computational
Technology Areas.

Important tasks in grid interpolation are: (a) �nding a grid cell containing a given point and
(b) computing interpolation parameters of a point with respect to a grid cell. Since the grids
can be very large, it is required that these two tasks are performed very eÆciently. Various
algorithms and software components are available in the literature and in the public domain
to perform grid interpolation in a piecemeal fashion. Researchers are also exploring distinct
interpolation algorithms within the academic/NASA/DoD community. However, there is
no coherent library/tool kit accessible to the DoD community to provide required func-
tionalities. In response to this need the development of INLib (Interpolation Library) was
initiated as a collaborative e�ort between Mississippi State University and the University
of Texas at Austin.

An alpha version of INLib has been completed. It contains stand-alone interpolation func-
tions for the following types of grids: multi-block structured volume grids consisting of
hexahedrons, unstructured volume grids consisting of tetrahedrons, and prismatic volume
grids consisting of prism elements. The library functions are written in C and Application
Programming Interfaces (APIs) are available in C and FORTRAN.

INLib is being developed as one of the modules of GGTK, which is an extensive library of
geometry and grid functions currently under development [1]. Figure 1 shows some of the
modules in GGTK. The plan is to extract any desired and available functionalities from
existing code bases, add new functionalities wherever necessary, integrate all the function-
alities into libraries, and provide C and FORTRAN APIs. The approach is as follows:

1. Identify various modules to be included in GGTK such as NURBS, structured and
unstructured grids, grid interpolation, elliptic grids, grid quality, trans�nite interpo-
lation, etc.

2. For each module, extract functions from existing code bases like GGLib and Genie.
The functions may be in FORTRAN or C.

1Visiting senior research assistant, Center for Computational Systems, ERC, Mississippi State University
2Professor, Aerospace Engineering, Center for Computational Systems, ERC, Mississippi State University,
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Figure 1: Currently existing modules in GGTK

3. Add new functions as required in various modules.

4. Identify common geometry and grid entities and de�ne common data structures in C.
This procedure will help to provide uniform APIs in C and will also help in de�ning
common parameters for entities across various functions for FORTRAN APIs.

5. Compile the functions in various modules, creating libraries and providing ways of
linking the libraries to other applications.

6. Develop and test APIs in C and FORTRAN.

In this report, a detailed description of the grid interpolation module is given. Descriptions
of various entities and data-structures associated with grid interpolation are given �rst
followed by the main functionality of the module. Next, implementation details and brief
descriptions of some of the algorithms used are provided. Then, results of experiments on
some test data are given. Finally, conclusions and work in progress are reported.

2 Entities and Data-structures

Currently INLib contains functions for grid interpolation of three types of grids: multi-block
structured volume grids, unstructured volume grids, and prismatic volume grids. The main
entities identi�ed by their C structure names are:

� Basic 3D entities: Point3d or point t, Tetrahedron, and Box3d

� 3D Grid entities: StructGrid, MBStructGrid, UnstructGrid, and PrismaticGrid

� Utility entities: Solution, and Octrees of bounding boxes.
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2.1 Basic 3D Entities

C data-structures of the basic 3d entities are given below.

typedef struct {

double x, y, z;

} point_t, Point3d, Vector3d;

typedef struct tetrahedron_t {

point_t vert[4];

} Tetrahedron;

typedef struct Box3d_t {

point_t min;

point_t max;

} Box3d;

2.2 3D Grid Entities

C data-structures of the 3d grid entities are given below.

/* 3D Structured Grid entities */

typedef struct structured_grid_t {

int ni; /* number of points in i-direction */

int nj; /* number of points in j-direction */

int nk; /* number of points in k-direction */

point_t* points; /* Pointer to array of points */

} StructGrid;

typedef struct multi-block_structured_grid_t {

int nblocks; /* number of blocks */

StructGrid* stgrids; /* Pointer to array of structured grids */

} MBStructGrid;

/* 3D Unstructured Grid entities */

typedef struct tetrahedron_cell {

int vert[4];

} Tetcell;

typedef struct cell_neighbors {

int nbr[4];

} Nbrcells;

typedef struct boundary_triangle {
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int vert[3];

int flag; /* boundary flag */

} Bdtri;

typedef struct unstructured_grid {

int npoints, nbdtris, ntets;

point_t *points;

Bdtri *bdtris;

Tetcell *tets;

Nbrcells *nbrs;

} UnstructGrid;

/* 3D Prismatic Grid entities */

typedef struct prism_cell {

int vert[6];

} Prmcell;

typedef struct prism_cell_neighbors {

int nbr[5];

} PRGNbrcells;

typedef struct boundary_element {

int nvert;

int vert[4];

int flag; /* boundary flag */

} Bdelm;

typedef struct prismatic_grid {

int npoints, nbdelms, nprms;

point_t *points;

Bdelm *bdelms;

Prmcell *prms;

PRGNbrcells *nbrs;

} PrismaticGrid;

2.3 Utility Entities

C data-structures of the utility entities are given below.

typedef struct solution_for_a_grid_t {

char solutionLocations[2]; /* To specify solution values are at */

/* grid points or at cell centers */

int nvalues; /* Number of values */

double* values; /* Solution values */

} Solution;
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/* Octree of bounding boxes of a Structured Grid */

typedef struct octreeNode_t OctreeNode;

typedef struct octreeNode_t {

int i0, i1; /* bounds of indices in i direction */

int j0, j1; /* bounds of indices in j direction */

int k0, k1; /* bounds of indices in k direction */

Box3d bdbox;

int numChildren;

OctreeNode** children;

} Octree;

/* Octree of bounding boxes for Unstructured and Prismatic grids */

typedef struct bbx_Octree_Node bbxOctreeNode;

struct bbx_Octree_Node {

arrayInts *bucket;

Box3d *bdbox;

bbxOctreeNode **children; };

3 Functions and APIs

For each of the structured, unstructured, and prismatic volume grids, the following set of
main and utility functions are given:

1. Main grid interpolation function for a given grid and solution;

2. Finding a cell (hex or tet or prism) containing a given point;

3. Computation of interpolation parameters of a point w.r.t. a cell { u; v; w for hex cells
and �; �; 
; Æ for tet or prism cells;

4. Computation of octrees, which are used in search routines, for structured, unstruc-
tured and prismatic volume grid.

A complete list of API functions in C syntax is given in the Appendix.

4 Implementation Details

Brief details of the algorithms used for search and interpolation tasks are given below with
respect to the three types of grids { 3D Structured grids consisting of hexahedrons, 3D
unstructured grids consisting of tetrahedrons, and 3D prismatic grids consisting of six-
noded prisms.
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Figure 2: Three kinds of 3D grid cells

4.1 Interpolation Parameters

Methods for computation of interpolation parameters of a point with respect to the three
kinds of grid cells, shown in Figure 2, are given below.

4.1.1 Interpolation Parameters with respect to a Hexahedron

Let P be a point in 3D and H be a hexahedron with vertices P000, P001, P010, P011, P100,
P101, P110, P111 (see Figure 2); then the interpolation parameters u; v; w of P with respect
to H are de�ned by the following equation:

P = (1� u)(1� v)(1 �w)P000 + (1� u)(1� v)(1 + w)P001+

(1� u)(1 + v)(1� w)P010 + (1� u)(1 + v)(1 + w)P011+

(1 + u)(1 � v)(1� w)P100 + (1 + u)(1� v)(1 + w)P101+

(1 + u)(1 + v)(1 � w)P110 + (1 + u)(1 + v)(1 + w)P111 (1)

For given P and H, this is a non-linear equation in u; v; w and can be solved numerically by
the Newton-Raphson iterative method [2]. The procedure given in [2] has been implemented
and the method has been found to be eÆcient. For a non-degenerate hexahedron, the
method converges within ten iterations.

The point lies inside or on the hexahedron if �1 � u; v; w � 1:

4.1.2 Interpolation Parameters with respect to a Tetrahedron

Let P be a point in 3D and T be a tetrahedron with vertices A;B;C;D. Then the interpo-
lation parameters �; �; 
; Æ of P with respect to T are de�ned by the following equations:

P = �A+ �B + 
C + ÆD (2)

�+ � + 
 + Æ = 1 (3)

This results in four linear equations (in �; �; 
; Æ) that can be solved exactly for any non-
degenerate tetrahedron.

The point lies inside or on the tetrahedron if 0 � �; �; 
; Æ � 1:
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4.1.3 Interpolation Parameters with respect to a Prism

Let P be a point in 3D and S be a six-noded prism with vertices A0; B0; C0; A1; B1; C1 (see
Figure 2); then the interpolation parameters �; �; 
; Æ of P with respect to S are de�ned by
the following equations:

P = (1� Æ)(�A0 + �B0 + 
C0) + Æ(�A1 + �B1 + 
C1) (4)

�+ � + 
 = 1 (5)

Using equation (5) we can write 
 = 1� �� �. By substituting this for 
 in equation (4),
we can eliminate 
 and obtain a single vector equation in �; �; Æ as follows:

P = (1� Æ)[�(A0 � C0) + �(B0 � C0) + C0] + Æ[�(A1 �C1) + �(B1 � C1) + C1] (6)

This equation is a non-linear equation (in �; �; Æ) that can be solved numerically by the
Newton-Raphson iterative method, in the same way that we solve equation (1) for u; v; w.

The point lies inside or on the prism if 0 � �; �; 
; Æ � 1:

4.2 Search Methods

Given a grid and a point P , the task of a search method is to determine if the point lies
in the grid and, in that case, to �nd the grid cell containing the point. For structured
and unstructured grids, two kinds of search methods have been implemented. They are
search by traversal and search by octree. For prismatic grids only search by octree has been
implemented.

4.2.1 Search by Traversal

Search by traversal is done as follows (see reference [2] for complete details):

1. Choose an initial trial cell of the grid.

2. Find interpolation parameters of the point with respect to the cell. Mark the current
trial cell as visited.

3. Using the interpolation parameters, determine whether the point lies in the cell or
not.

4. If the point lies in the cell, the search is over - RETURN the cell id and the interpo-
lation parameters.

5. If not, select the neighboring cell as determined by the interpolation parameters.

6. If the neighboring cell exists, take that as the trial cell and go to Step 2 above.

7. If the neighboring cell does not exist, it indicates that a boundary has been hit. Go
to either Step 8 or Step 11.

8. Choose a cell that has not been marked as visited.
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9. If such a cell exists, take that as the trial cell and go to Step 2 above.

10. If there is no unvisited cell, RETURN saying that the search is over and the point
does not lie in the grid.

11. Halt if the search reaches a boundary. RETURN saying that the search has failed. In
this case one can call another search method, such as the octree search, and �nd the
point.

From the above procedure, it can be seen that eÆciency of the traversal method depends
on the initial choice of a trial cell. If a sequence of points is being searched for, the returned
cell of the previous point is taken as the initial trial cell of the current point. For the �rst
point, one generally takes the �rst grid cell as the initial trial cell. In our implementation,
the cell for the �rst point is found by the octree method.

Secondly, if a boundary is hit (Step 7), it indicates that the point is outside the grid or
that the domain of the grid is concave. In the case of concave domains, it may be time
consuming to continue the search with another unvisited trial cell. In our implementation,
the traversal in that case is abandoned (Step 11) and the point is searched by the octree
method.

4.2.2 Search by Octree

In this method an octree of bounding boxes of the grid is constructed as a pre-processing
step. The bounding box of the whole grid is taken as the starting (root) bounding box.
It is recursively subdivided into smaller bounding boxes. Each bounding box is associated
with a bucket which stores the identi�ers of all of the cells which intersect the bounding
box. If a bucket is empty or contains less than a prede�ned minimum number of cells then
it corresponds to a leaf node. Search using an octree is done as follows:

1. Take the root as the current octree node.

2. Check if the given point lies in the bounding box of the current node.

3. If the point does not lie in the bounding box, return not found.

4. If the point lies in the bounding box, and if it is a leaf node, go to Step 5; else go to
Step 6.

5. For each of the cells in the bucket of the leaf node, check if the point lies in the cell by
computing interpolation parameters of the point. If the point lies in any of the cell,
return found along with the cell id. If not, return not found.

6. Identify the child octant the point lies in. Take that octant as the current node and
go to Step 2.
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5 Experimental Results

The grid interpolation functions of INLib have been tested and found to be working correctly
for the test data. The results of our experiments with three grids, one each for structured,
unstructured, and prismatic grids, are given below. In each of these cases, solution values
at the vertices of the grid were generated using analytical solution functions.

5.1 Structured Grid

The grids shown in Figure 3 were used to test structured grid interpolation functions. Both
were 3D structured grids of the same size (30� 20� 10 in I, J, K directions) over the same
volume. The grid on the left, with highly skewed hexahedrons, was taken as the given grid
and the uniform grid on the right was taken as the target grid. Search and interpolation of
solution values were done for the vertices of the target grid and the following results were
obtained:

� Pre-computation of the Octree of bounding boxes of the given grid did not take much
time. It was only a fraction of the search time and for such a small grid it was
negligible.

� Out of 6000 points (vertices) of the target grid, 478 points were not found to be inside
the given grid. They were actually outside the given grid for the tolerance value of
0.01, which was used for inside/outside test using interpolation parameters u; v; w.
When the tolerance value was increased to 0.5, all the points were inside.

� The interpolated solution values were compared with the values computed directly
from the solution function. The results were as expected. The solution values were
exact (up to machine tolerance) if the solution function was a linear polynomial. For
non-linear solution functions they were not as exact because the interpolation was
only linear inside each grid cell.

5.2 Unstructured Grid

Unstructured grid interpolation functions were tested with a grid (shown in Figure 4) having
166,139 vertices, 76,308 boundary triangles, and 873,256 tetrahedrons. It is a volume grid
used to compute wind-
ow simulation over a small part of a city. For this grid, the pre-
computation of the Octree of bounding boxes took about four minutes. The interpolated
solution values were exact for linear solution functions.

5.3 Prismatic grid

To test the prismatic grid interpolation functions, we converted the structured grid shown
in the left half of Figure 3, into a prismatic grid by splitting each hexahedron into two
prisms as shown in Figure 5. Here again, the computation of the octree of bounding boxes
was fast and the interpolation was exact for linear solution functions.
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Figure 3: Given (left) and target (right) 3D structured grids of size 30� 20� 10 over same
volume.

Figure 4: Unstructured grid over a few buildings of a city
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Figure 5: Splitting a hexahedron into two prisms
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6 Conclusions and Work in Progress

Stand alone grid interpolation functions have been developed for structured, unstructured,
and prismatic volume grids in the form of a library of functions. The functions are coded in
C, and C data-structures are given for all of the associated entities. The functions have been
tested using a few sample grids. The results showed that the interpolated values were exact
for linear solution functions. They also showed that the pre-computation of the octrees
used in the search methods took only a fraction of the total search time.

In order that the library may be widely used, the following tasks have been identi�ed and
the implementation work is in progress:

� Test and demonstrate INLib functions using data from actual applications.

� Incorporate grid interpolation for generalized volume grids consisting of mixed volume
cells.

� Experiment with higher order interpolation functions.
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Appendix: List of INLib Functions

Read and write functions

MBStructGrid* readMBStructGrid(char* filename); /* Fast3d format */

MBStructGrid* readMBStructGridPoint3dFormat(char* filename);

void writeMBStructGrid(MBStructGrid* mbgrid, char* filename);

UnstructGrid* usgReadUnstructGrid(FILE* gridfile);

void usgWriteUnstructGrid(UnstructGrid* grid, FILE* gridfile);

PrismaticGrid* prgReadPrismaticGrid(FILE* gridfile);

void prgWritePrismaticGrid(PrismaticGrid* grid, FILE* gridfile);

3D Structured grid interpolation functions

int MBStructGridInterpolation(

MBStructGrid *givenGrid, Solution *givenSolution,

MBStructGrid *targetGrid, Solution **targetSolutionPtr);

OctreeNode* buildStructGridOctree(StructGrid* grid, int i0, int i1,

int j0, int j1, int k0, int k1);

int SGOctreeSearch(point_t* pt, StructGrid* grid, OctreeNode* octree,

int *icell, int *jcell, int *kcell,

double* alpha, double* beta, double* gamma,

double tol1, double tol2);

void getHexCellVertices(StructGrid* grid, int i0, int j0, int k0,

double x[8], double y[8], double z[8]);

int CheckHexa(double *xyz,

double x[],double y[],double z[],

double *alpha, double *beta, double *gamma,

double tol1,double tol2);

int find_3d_cell(point_t* pt, StructGrid* grid,

int *i1,int *j1,int *k1,

double *a1,double *b1, double *g1,

double tol1, double tol2);

double interpolateValues(MBStructGrid* givenGrid,

Solution* givenSolution,

int block, int icell, int jcell, int kcell,

double alpha, double beta, double gamma);
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3D Unstructured grid interpolation functions

int usgUnstructGridInterpolation(UnstructGrid* grid,

arrayDoubles *givenSolution,

int npts, point_t* pts,

arrayDoubles **targetSolutionPtr);

int usgFindCell(UnstructGrid* grid, point_t* pt,

int* currentcell, double* Cf, double Tol);

int usgFind_Coeffs(point_t* fpoint, Tetrahedron* current_cell,

double* Coeffs);

usgOctreeNode* usgCompOctreeNode(UnstructGrid* grid, Box3d* bdboxCells,

Box3d* nodeBdbox, arrayInts* bucket,

int maxsize, int currentLevel, int maxLevel);

int usgFindCellByOctree(UnstructGrid* grid, point_t* pt,

usgOctreeNode* octree,

Box3d* gridBdbox, Box3d* cellBdboxes,

int* cellid, double* Cf, double Tol);

double usgInterpolateValues(UnstructGrid* grid, arrayDoubles *soln,

int cellid, double* cf);

3D Prismatic grid interpolation functions

int prgPrismaticGridInterpolation(PrismaticGrid* grid,

arrayDoubles *givenSolution,

int npts, point_t* pts,

arrayDoubles **targetSolutionPtr);

bbxOctreeNode* prgCompOctreeofPrms(PrismaticGrid* grid, Box3d* gridBdbox,

Box3d** bdboxCells, double tol);

int prgFindCellByOctree(PrismaticGrid* grid, point_t* pt,

bbxOctreeNode* octree,

Box3d* gridBdbox, Box3d* cellBdboxes,

int* cellid, double* Cf, double Tol);

int prgPrismParametersOfPoint(double* x, double* y, double* z, point_t* pt,

double* Cf, double tol);

double prgInterpolateValues(PrismaticGrid* grid, arrayDoubles *soln,

int cellid, double* cf);
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